

Learning objectives	Rady Children's Institu
Explain	Explain how genetics/genomics may influence treatment plans for individuals
Identify	Identify resources to investigate current evidence for treatment of diseases
Explore	Explore the importance of data & evidence regarding current & upcoming gene therapies/genetic-informed treatments

Rapid precision/genomic medicine Early Ascertainment Ultra-rapid Genetic Rapid Precision Rady Children's Institute of Patients Disease Diagnosis Medicine Electronic Clinical Data Aggregation, EHR Integration Automation Decision Support Continuous quality improvement, Dx and Rx innovation 6 R R S. Early هم **_** ₩ 3. On-boarding health systems 2. RPM 4. Hardwiring to 1. Awareness 6. Parental 7. rWGS Acceleration Toolkit Enhance health RPM® Linkage of EHR to Portal, Identification by describing value proposition Counseling Ordered & Authorized system literacy of rWGS, RPM, utilization impact Consent ICU patients & scope of 1 BON N ACTG ð 9. Accession 13. Results 12. Phenome 8. Samples $2 \le 2$ 11. Variant collection, Samples 10. Rapid Whole Reporting & Collected+ calling & Review with MD Interpretation & Shipped Overnight 14. eClinical Decision & parents custody & Support for precision medicine interventions priority 20. Demonstrate Improved Outcomes and Reduced Costs #\$\/ 19. Analyze 15. QI: TAT, parental counseling, inpatient 17. Monitor Outcomes Knowledgebase of clinical outcomes 16. QI: Parental, & Life-long Care Page 8 18. Build RPM Clinician, Health Care coordination & precision medicine Knowledgebase System satisfaction to inform improved

Case Example

Explain how genetics/genomics may influence treatment plans for individuals

- 5-week-old previously healthy ♂ who presented to ED with inconsolable crying for 2 hours, extreme irritability & change in cry
- Downward eye deviation noted on neurological examination
- Parents consanguineous

Page 9

9

Ide	atify					Identify	resources	to investig	gate current	
iue	Identify					evidence for treatment of diseases				
Referen	Study ce Date Type	Sequencing Type	Neonatal and Pediatric Intensive Care Unit (NICU, PICU) Enrollment Criteria		Rate of Diagnosis	Rate of Change in Management	Rate of Change in Outcome	Time to Result (days)		
11	2012 cases	urWGS	NICU infants with suspected genetic disease	4	75%	N/D	N/D	2		
12,13	2015 cohort	rWGS	<4 mo of age; suspected actionable genetic disease	35	57%	3196	29%	23		
14	2017 cohort	rWES	<100 days of life; suspected genetic disease	63	51%	37%	19%	13		
15	2018 RCT	rWGS	<4 mo of age; suspected genetic disease	32	41%	31%	N/D	13		
16	2018 cohort	rWGS	infants; suspected genetic disease	42	43%	31%	26%	23		
17	2018 cohort	rWES	acutely ill children with suspected genetic diseases	40	53%	30%	8%	16		
18	2018 cohort	rWGS	children; PICU and cardiovascular ICU	24	42%	1396	N/D	9		
19	2019 cohort	rWGS	4 months-18 years; PICU; suspected genetic diseases	38	48%	39%	8%	14		
7	2019 cohort	rWGS	suspected genetic disease	195	21%	13%	N/D	21		
20	2019 cases	urWGS	infants; suspected genetic disease	7	43%	43%	N/D	0.8		
21	2019 cohort	rWES	<4 mo of age; ICU; hypotonia, seizures, metabolic, multiple congenital anomalies	50	54%	48%	N/D	5		
22	2020 cohort	rWES	NICU & PICU; complex	130	48%	23%	N/D	3.8		
23	2020 cohort	rWES	PICU; <6 years; new metabolic/neurologic disease	10	50%	30%	N/D	9.8		
6, here	2019 RCT	rWGS	infants; disease of unknown	94	19%	24%	10%	11		
		rWES	etiology; within 96 h of admission	95	20%	20%	18%	11		
		urWGS		24	46%	63%	25%	4.6		
Weighted	l average, urWG	s		35	49%	58%	25%	3.6		Pag
Weighter	l average, rWGS	or rWES		894	37%	38%	16%	15.0		

Spinal Muscular Atrophy Gene Therapy

Rady Children's Institute

Exploring the evidence:

- 1. FDA approval/indication
- 2. Evidence:
 - 1. Number of publications
 - 2. Journal quality
 - 3. Author independence
 - 4. Who paid for study?
 - 5. Experimental design
 - 6. Number of subjects
 - 7. Relevance of end-points
 - 8. Statistical tests use
 - 9. P-values
- Cost effectiveness QALYs

Page 33

33

Onasemnogene abeparvosec vs Nusinersen

- FDA approved 2019
- 36 publications

 Expected predicted survival 37.2 life years for AVXS-101 (discounted QALYs, 15.7)

- AVXS-101 \$2.5-5.0M/treatment.
- Average lifetime cost/patient: \$4.2-6.6M
- Incremental cost-effectiveness ratio -\$203,072 nusinersen)

Page 34

Patient-specific Antisense Oligonucleotide Therapy for Genetic Diseases Jinkuk Kim, Ph.D., ... Austin Larson, M.D., et al. 2019;381:1644-1652

- Recessive neuronal ceroid lipofuscinosis 7 (Batten's disease 7)
 - Onset age 2-7
 - Progressive developmental regression, speech impairment, loss of vision, personality disorders
 - Most nonambulatory 2 years after onset
 - Death/vegetative state with intractable seizures age ~12
- Proband
 - Onset age 3
 - · Diagnosis age 6
 - 1 year development of patient-specific Antisense Oligonucleotide Therapy

Page 35

35

Patient-specific Antisense Oligonucleotide Therapy for Genetic Diseases Jinkuk Kim, Ph.D., ... Austin Larson, M.D., et al. 2019;381:1644-1652

- Treatment started age 7
- Before: 15-30 seizures/day x 1-2 mins
- After: 0-20 seizures x < 1 min. No significant adverse events

Page 37

37

